男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
World
Home / World / Kaleidoscope

Laser-treated metals could be next step in fight against germs

By Barry He | China Daily Global | Updated: 2020-04-23 09:28
Share
Share - WeChat
A woman cleans door handles at the entrance to Westminster Cathedral in London, Britain, March 15, 2020. [Photo/Agencies]

Countless types of microbe that attack the human body can live on outdoor surfaces for days, meaning that frequently touched surfaces, such as door handles and handrails, can become locations where disease can spread at an alarming rate.

Disinfecting surfaces using a variety of chemicals, including alcohol concentrations and pesticide-related solutions, is one way to tackle the problem but the products are costly, both financially and in terms of time.

Researchers at Purdue University in the United States have now added to the options by creating a laser treatment that has the potential to turn any metal surface into an environment that is immediately hostile to bacteria, merely by altering the metal's surface texture.

The research has had promising results with scientists demonstrating that it was capable of manipulating the surface of copper to immediately kill bacteria, including MRSA.

The technique utilizes a laser to create small patterns on a nanoscale level on a metallic surface. The rugged texture increases the chance of a microbe rupturing on impact.

Imagine, instead of having a smooth runway for a plane to land on, large speed bumps are added to prevent a safe touchdown.

Copper's anti-bacterial qualities have been known for centuries which promoted its use as a physical currency when an object was needed to exchange between many hands.

However, instead of taking a matter of hours to break down as it would on untreated copper, bacteria instantly disintegrates on the microscopic rough texture that has received the laser treatment.

It should be noted, however, that this technique is not suitable yet to kill viruses such as the novel coronavirus that causes COVID-19 because viruses are much smaller than bacteria and would require a further refinement.

Viruses are so much smaller in fact, that a whole class of viruses, called Bacteriophages, exist with the sole purpose of infecting and reproducing within bacteria.

Led by Professor Rahim Rahimi, the research has instead shifted toward testing the technology on other materials, such as polymer plastics, to see if the same results in reducing the risk of bacterial growth can be achieved there too.

The application would be for devices such as orthopedic implants, including knee and hip replacements, and also for items such dressings and wearable implanted medical devices.

It is hoped that these would reduce the need for antibiotics and also help address growing concern about antibiotic resistance.

"The nice thing about our approach is it's not something we are adding to the surface, so there's no kind of additional material required, no antibiotics, no spray-coating," Rahimi said in a statement. "It's just modifying the native surface of the material. Antibiotic resistance is a big challenge right now, there are superbugs and bugs that are becoming more aggressive, antibiotics are not effective on them. We're developing technology that allows us to modify the surface of metal by laser surface modification to enhance antimicrobial properties."

The future of our war against microbes has been raging since before our inception as a species, and only in the last few centuries have we developed additional weapons in our arsenal against this common enemy, aside from our natural immune system.

It is vital that we continue to fund research and development in this field, so that scientists can continue to come up with newer and ever more ingenious solutions to continue this global battle against this seemingly infinite enemy.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 岑巩县| 双江| 五原县| 延津县| 丰台区| 光山县| 延津县| 邳州市| 柳州市| 六安市| 五大连池市| 汶川县| 庄河市| 永春县| 尖扎县| 拜泉县| 咸宁市| 都兰县| 琼中| 石城县| 宜春市| 奎屯市| 元阳县| 田阳县| 武鸣县| 馆陶县| 泾阳县| 云安县| 左权县| 宣威市| 乌海市| 沙洋县| 鄂温| 宽城| 象山县| 壤塘县| 岐山县| 翁牛特旗| 吉木萨尔县| 兴海县| 吉水县| 嘉义市| 镇江市| 宜阳县| 化德县| 扶绥县| 广灵县| 井冈山市| 岐山县| 合江县| 临夏县| 深水埗区| 泰来县| 黎城县| 乡城县| 奉节县| 余姚市| 益阳市| 塔城市| 沁阳市| 涪陵区| 龙里县| 舟曲县| 南昌县| 景洪市| 雅安市| 山西省| 武乡县| 九龙城区| 城口县| 河源市| 浑源县| 襄垣县| 桑日县| 新干县| 綦江县| 荃湾区| 沅江市| 兴仁县| 乌什县| 河西区| 濮阳县|