男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
Lifestyle
Home / Lifestyle / People

A thread of hope

By Xu Lin | China Daily | Updated: 2022-06-29 07:07
Share
Share - WeChat
Wang Lin (right) and her colleague analyze nucleic acid test results. [Photo provided to China Daily]

Sensing potential

The first research topic of the regenerative medicine center of Union Hospital was to find a suitable material to repair damaged nerves.

"As we had no idea which material was suitable, we had to continue our research through trial and error. We experienced numerous failures, which finally led to success," she says.

"The silk industry has a very long history in China, but we hardly knew anything about the potential of sericin in biomedicine. An idea suddenly struck me that sericin might be the way to crack the problem."

After extensive reading, she found that, while much literature and research is based on the clinical application of silk fibroin, the information about sericin was lacking, and what little she found was obsolete.

Therefore, she decided to figure out whether it was possible to use sericin in clinical practice.

The variables of experiments are many, such as temperature, reagents and the types of silkworm cocoon used. A small change means many more rounds of experiments.

After more than three years of research, she and her team successfully purified structurally intact sericin, with active bioactivity, obtaining a national invention patent authorization.

Wang says the new biological material, based on sericin, can be used in different aspects of regenerative medicine, especially in wound repair caused by road accidents and earthquakes or it can be applied in repairing thorax, myocardium, cartilage and tumor injuries.

For example, when a patient suffers from peripheral nerve deficiency, the common method is to reroute one's own healthy and less important nerves into the injured areas.

Wang's method is to transplant a nerve conduit made of sericin, which is biocompatible and degradable. It takes about 12 weeks for the nerves to regenerate and repair. She says it can greatly reduce the pain of patient if it's used in clinical practice.

"It will also be a great boon to patients who need an organ transplant or suffer organ failure, the number of which outnumber donors," she says.

She says it's necessary to synthesize different forms of sericin to be used in different areas. For example, using injectable sericin to repair myocardium in a minimally invasive way and using a sericin hydrogel to repair skin.

She and her team have also delved into the potential of sericin as a multifunctional nanoscale vehicle for cancer therapy.

She and her team have published dozens of theses, showing the results of the research, in authoritative international journals.

However, they are still a very long time away from clinical trials on human beings, due to the current research process and China's strict supervision rules. Their experiments are currently only undertaken on mice.

"Only after very thorough research can we pursue the process of putting it into clinical application," she says.

Extracellular matrix plays an important role in tissue repair. She says the key is how to design better biomimetic materials with sericin-to create an extracellular matrix that's much the same as the primary tissue, in terms of aperture and structure.

The departments for burns, hand surgery, vascular surgery, orthopedics and neurosurgery are all involved in researching the field of regenerative medicine.

She says, from a clinical perspective, their focus is on the traditional method of repair and they know the demand of patients. She believes it's important to work with each other in developing such cutting-edge technology.

"We often communicate with clinicians. When they have some difficulties, we try to come up with a solution from our perspective," she says.

Most Popular
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 紫阳县| 青龙| 平湖市| 泸溪县| 新丰县| 且末县| 麦盖提县| 山东省| 勃利县| 喀喇沁旗| 本溪| 淅川县| 龙州县| 延安市| 哈尔滨市| 衡山县| 通江县| 兴文县| 深圳市| 湖口县| 宣城市| 龙井市| 柏乡县| 巩留县| 蓬莱市| 扎兰屯市| 泽库县| 济宁市| 天全县| 玛曲县| 灵石县| 四子王旗| 郑州市| 临清市| 库尔勒市| 沙雅县| 安化县| 万全县| 彰化县| 璧山县| 衢州市| 邢台县| 巴东县| 古交市| 杨浦区| 修武县| 墨脱县| 铁力市| 宁安市| 山阳县| 巫溪县| 博兴县| 仙游县| 金乡县| 车致| 临夏市| 和平县| 商洛市| 莒南县| 甘洛县| 馆陶县| 泊头市| 容城县| 新余市| 抚州市| 肥城市| 桂林市| 红河县| 万盛区| 丰都县| 西华县| 华安县| 开阳县| 鄂尔多斯市| 汶上县| 精河县| 汤原县| 府谷县| 清涧县| 吉首市| 阜康市| 错那县|