男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語(yǔ)Fran?ais
World
Home / World / Vision China

Laiye discusses language models

By ZHU WENQIAN | China Daily Global | Updated: 2023-05-19 09:30
Share
Share - WeChat
Pierre Pakey

Pierre Pakey, head of product innovation at Laiye Technology (Beijing) Co Ltd, shared his thoughts about how large language models, a new path in artificial intelligence, can mimic human minds in some ways during the latest Vision China.

Previously, the most common way to train AI was to give it plenty of examples, a process called supervised training.

With the new approach of descriptive training, AIs are trained in the same way humans would be, by describing the task that requires completion in natural language, Pakey said.

Taking the example of intelligent document processing, where the goal is to extract key information such as issue dates, supplier addresses and vendor names from an invoice, he said that the common way of training involves feeding the AI thousands of invoices.

But as invoices vary, one of the issues is physically pinpointing the positions of each piece of information on the documents in order to train the language model. This process is both slow and prone to errors, Pakey said.

"With descriptive training, people just describe what they want in plain language. So it's extremely simple and it completely changes the time necessary to actually launch a new AI and train on a new task," he said.

With descriptive training, users must ask themselves what the best question is, and what is the best way of asking the model to perform the desired task. This process is called prompt engineering.

"The first time we launched a large language model in production, we had very disappointing accuracy, meaning that our metrics were telling us this was a bad model. When we dove deeply to understand why our accuracy was poor, we noticed that the model was still doing better than the human laborers it was ranked against," he said.

The large language model needed to handle hundreds and even thousands of different examples, and in this situation, it did better than human workers at labeling.

As with any AI model, its accuracy did not exceed 95 percent, and Pakey said that if users needed further improvements, it was only a question of aligning expectations and of being very clear about what information they wanted to extract.

Large language models still have limitations. They need to be given time to produce a good answer, and when prompting different models for an answer, it's important to bear in mind the trade off between complexity and accuracy, Pakey said.

"But most importantly, they are able to learn new tasks almost instantly, and that makes this one of the most exciting things that we have seen in AI in a long time."

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 祁门县| 普宁市| 新安县| 永德县| 高安市| 文昌市| 浦北县| 大邑县| 红原县| 怀化市| 郴州市| 株洲市| 巴东县| 灵寿县| 调兵山市| 丹阳市| 定襄县| 西城区| 大洼县| 古交市| 长宁区| 玉环县| 三江| 萨嘎县| 青浦区| 无锡市| 湘阴县| 双鸭山市| 呼和浩特市| 梧州市| 新化县| 昌邑市| 东乡| 石景山区| 双城市| 十堰市| 宁远县| 新绛县| 揭东县| 新闻| 滁州市| 海盐县| 潞西市| 明溪县| 娱乐| 丹凤县| 溧水县| 澄迈县| 黑水县| 凉山| 石泉县| 策勒县| 买车| 庄浪县| 自治县| 巢湖市| 天峨县| 繁峙县| 铜梁县| 涟源市| 友谊县| 邢台县| 锦州市| 时尚| 乌兰浩特市| 潢川县| 盐亭县| 孟连| 惠东县| 辽宁省| 恩平市| 丰宁| 马边| 辽源市| 双柏县| 青岛市| 宁强县| 滨海县| 祥云县| 醴陵市| 长顺县| 瓦房店市|