男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

AI to play bigger role in astronomy, experts say

By Wang Xin in Shanghai | China Daily | Updated: 2024-07-08 09:21
Share
Share - WeChat

Artificial intelligence is already providing solid support in astronomical data collection, analysis and processing, as well as in satellite engineering and system management, and is expected to further assist astronomers worldwide in their search for exoplanets and space exploration, experts said in Shanghai on Thursday.

Zhang Yonghe, deputy head of the Chinese Academy of Sciences' Innovation Academy for Microsatellites in Shanghai, was among those who spoke during the 2024 World Artificial Intelligence Conference, which ran from Thursday to Saturday.

"Astronomy is about discovering the unknown, and AI can help in various aspects when it comes to astronomy," said Zhang, who is also director of the Key Laboratory of Spacecraft Digitalization Technologies, and lead designer of the Einstein Probe and chief commander of the Space Variable Objects Monitor, both of which are telescope satellites.

He said AI can help make a big difference in data analysis and processing.

Though many people may be familiar with megabytes, gigabytes and terabytes, astronomy generally measures data in petabytes. One petabyte is equal to about 1,000 TB.

"Each astronomical satellite can generate massive amounts of data, and the quantity can be too much for the human brain to process," Zhang said.

"Also, astronomical data is complicated. Some data can be extremely subtle, but it often indicates unknown phenomena and new discoveries, especially in the search for exoplanets," he said, adding that AI can help astronomers identify accidental discoveries.

In addition to data processing, Zhang said AI could also play a big role in spacecraft development and the management of observational satellites.

For example, AI can accelerate the satellite design process by swiftly creating plans for an optimal structure.

"An astronomical spacecraft usually requires much more advanced technologies than existing ones when it is initially proposed," Zhang said. "That is to say, we have to think about the future and carry out error analysis to find out the right way of doing things. And this is where AI is key — it can help us face technical challenges at much lower costs."

In recent years, China has seen rapid development in space science. The nation's first astronomical satellite, China's Dark Matter Particle Explorer — nicknamed Wukong, or "Monkey King" — was launched in December 2015 and is still functioning well.

In August 2016, China launched the world's first satellite dedicated to testing the fundamentals of quantum communication in space. Six years later, the Advanced Space-based Solar Observatory, a comprehensive solar observation satellite dubbed Kuafu 1 in Chinese, was sent into space and has detected more than 100 solar white-light flares, according to CAS' Purple Mountain Observatory.

On Jan 9, the Einstein Probe was sent into orbit from the Xichang Satellite Launch Center in Sichuan province to observe astronomical phenomena. Last month, the Space Variable Objects Monitor, jointly developed by China and France for two decades, was launched to capture and observe gamma-ray bursts.

"With continuously increasing investment in the astronomy and space sector, China has been making efforts to increase the number of astronomical satellites in recent years," Zhang said. "As more satellites are produced, the human brain is less capable of efficiently managing aspects such as their operations and data transmissions."

With the rapid development of AI systems, astronomy is advancing faster than ever before.

"Astronomy involves global collaboration and coordination," Zhang said. "When one spacecraft observes a phenomenon with high value, it will promptly transmit the information to other observation devices across the world, including other spacecraft in space and telescopes on Earth. Given that most of the devices are unattended in space, artificial intelligence can play a major part in the data-sharing process.

"Any spacecraft or device has a limited view on its own, but others located in different places can be complementary. Hence, the more astronomical spacecraft there are, and the more intelligent they are, the more opportunities for new discoveries will arise."

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 桂阳县| 承德市| 星座| 布尔津县| 武清区| 莱西市| 沅陵县| 南雄市| 运城市| 靖安县| 蕲春县| 延津县| 灵台县| 曲松县| 阜阳市| 定结县| 黔南| 同江市| 涪陵区| 桐城市| 北海市| 花垣县| 河池市| 镇平县| 卢龙县| 望城县| 海林市| 手机| 枞阳县| 和龙市| 泸水县| 通州市| 阳春市| 达州市| 尼勒克县| 萨迦县| 织金县| 肃宁县| 阳曲县| 明水县| 马公市| 图片| 贵溪市| 明光市| 台东县| 丰原市| 太康县| 灵丘县| 禹城市| 五大连池市| 洛宁县| 教育| 佛教| 璧山县| 托克逊县| 景德镇市| 中江县| 桃园县| 眉山市| 上饶县| 洮南市| 新乐市| 大英县| 辉县市| 沙湾县| 克山县| 广元市| 宜兴市| 阿巴嘎旗| 合作市| 长沙县| 思南县| 大宁县| 运城市| 宁德市| 鹤山市| 城口县| 绵阳市| 天门市| 万年县| 如皋市| 邢台县|