男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影

Researchers work to reduce emissions in dairy industry

Genetic selection being used to lower sector's output of methane

By YUAN HUI in Hohhot and HOU LIQIANG in Beijing | China Daily | Updated: 2024-10-08 09:41
Share
Share - WeChat

Editor's note: China Daily is publishing a series illustrating the country's efforts to achieve its carbon peaking and carbon neutrality goals.

Dairy cows are milked at a smart ranch in Tumd Left Banner, Inner Mongolia autonomous region, in April. The ranch uses cutting-edge technologies to turn cattle excrement into fertilizer to lower carbon emissions. LIAN ZHEN/XINHUA

With China's appetite for milk showing no signs of turning sour, a team of scientists has embarked on a groundbreaking mission in the Inner Mongolian autonomous region to create low-methane-emitting dairy cows.

Launched last year by Sk.xing, the largest cow breeding enterprise in China, the ambitious project aims to identify genes that contribute to high milk production, longevity and low emissions of methane, according to the company, headquartered in Inner Mongolia's capital Hohhot.

As the second most abundant global man-made greenhouse gas behind carbon dioxide, methane has more than 80 times the warming power of CO2 over the first 20 years after it reaches the atmosphere.

According to the International Energy Agency, the flammable gas is responsible for about 30 percent of the rise in global temperatures since the industrial revolution.

An estimated 60 percent of the world's methane emissions are from human activities, with agriculture, fossil fuel extraction and consumption, and decomposition of landfill waste as the largest sources. Agriculture, including animal husbandry, is responsible for 40 percent of man-made methane emissions.

Li Xihe, a leading scientist at the company, shed light on the intricate, multi-phased research involved in achieving the mission's goal of decarbonizing the dairy cow sector.

The journey begins with measuring the methane emissions of individual cows using a special device resembling a feeding trough, he said.

This cleverly designed contraption not only attracts the cows but also monitors the gases they inhale and exhale, providing valuable data for analysis.

As a ruminant animal, cows, as well as sheep and goats, host millions of tiny microbes in their stomachs. While they aid in digestion and are helpful to the livestock's health, an unfortunate by-product of their functioning is the creation of methane gas, which is expelled into the atmosphere through the animal's mouth and rear end.

The team is using mid-infrared spectra to collect methane emission data and then utilizes machine and deep learning algorithms to build a predictive model for each cow's methane output, he continued.

"With the established model, the researchers can predict the methane emission level of each cow, serving as a crucial parameter for identifying low-emission candidates," he said.

To complete the selection process, they analyze the complete genome of each cow, ultimately selecting those with both low methane emissions and desirable genetic traits, the scientist added.

Li describes the research as a meticulous process that requires time and dedication.

Developing a reliable methane emission prediction model takes at least two years, he said.

Assessing the chosen cows' milk components and mid-infrared data requires another year. Selecting cows with both high milk production and longevity while maintaining low methane emissions takes an additional one to two years.

However, more research is still needed after the low-carbon core herd is established, he stressed.

Scientists will meticulously monitor the herds' methane emissions, milk production and other vital parameters, to build a comprehensive database that confirms the low-methane status of these chosen cows.

"These exceptional cows will then form the foundation of a breeding program, producing low-methane embryos and facilitating large-scale herd expansion," he said.

Li and his team are also exploring the ideal fodder and management practices for these cows, optimizing their living environment to ensure that they fully express their low-methane genetic potential.

1 2 Next   >>|
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 博白县| 涿州市| 德格县| 云林县| 承德市| 西城区| 水城县| 灵宝市| 恭城| 广州市| 海晏县| 沾化县| 洞口县| 清河县| 神池县| 太湖县| 海安县| 资中县| 陈巴尔虎旗| 巴南区| 当涂县| 彭阳县| 霍山县| 雷波县| 兴国县| 汽车| 金华市| 郴州市| 湛江市| 西和县| 神木县| 乌兰浩特市| 大悟县| 章丘市| 海城市| 津南区| 丹寨县| 天峨县| 诸城市| 抚顺市| 南部县| 东海县| 商洛市| 无为县| 南溪县| 宣武区| 青阳县| 宁德市| 凤山县| 丽江市| 南宫市| 开化县| 乌鲁木齐市| 中超| 腾冲县| 安阳市| 高要市| 广平县| 东莞市| 大同市| 贡觉县| 象山县| 金昌市| 西盟| 法库县| 深泽县| 普格县| 礼泉县| 察隅县| 府谷县| 礼泉县| 仁寿县| 大冶市| 三明市| 清涧县| 津市市| 民丰县| 炎陵县| 宜良县| 海晏县| 万荣县| 贡嘎县|