男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Astronomical satellite unveils groundbreaking discoveries

By Lin Shujuan in Shanghai | chinadaily.com.cn | Updated: 2025-04-24 14:55
Share
Share - WeChat
An image of the Space-based Multi-band Variable Object Monitor. [Photo provided to chinadaily.com.cn]

The Space-based multi-band Variable Object Monitor (SVOM), a cutting-edge astronomical satellite jointly developed by Chinese and French scientists to capture and observe the most distant explosions of stars known as gamma-ray bursts (GRBs), has astounded the scientific community with its groundbreaking discoveries after a mere 10 months in orbit.

Unveiling its initial scientific achievements during the 10th "Space Day of China" celebration in Shanghai, the SVOM project has marked a significant leap forward in the study of gamma-ray bursts, which are considered the most violent explosive phenomena in the universe following the Big Bang. These phenomena occur during the collapse of massive stars or the merging of binary compact stars, such as neutron stars and black holes.

Since its launch into space on June 22, 2024, as a result of nearly two decades of collaboration between Chinese and French scientists, the SVOM satellite has detected over 100 gamma-ray bursts, showcasing its prowess as the most powerful "gamma-ray burst catcher" globally.

Among these discoveries, one standout finding is the capture of a gamma-ray burst, GRB250314A, originating from the universe's early epoch just 730 million years after its inception, about 13 billion years ago. Scientists speculate that this burst may have originated from the collapse of the earliest stars into black holes or neutron stars, shedding light on the universe's infancy.

Additionally, the observation of gamma-ray burst GRB 241105A has set a new record for the farthest observation of a short-duration gamma-ray burst by humans, further emphasizing the satellite's remarkable capabilities.

"These discoveries not only affirm the exceptional performance of the satellite but also offer a fresh perspective on the exploration of cutting-edge topics such as the formation of early stars and the genesis of black holes," said Wei Jianyan, the principle investigator from the Chinese side and a researcher at the National Astronomical Observatories of the Chinese Academy of Sciences (CAS).

"Through SVOM's detections, scientists have identified several unprecedented types of gamma-ray bursts, challenging established models and theories in the realm of gamma-ray burst physics," Wei added.

Bertrand Cordier, the principle investigator from the French side, highlighted the satellite's exceptional sensitivity to previously elusive rich X-ray GRBs, expanding the horizons of exploration in this domain.

An image of the Space-based Multi-band Variable Object Monitor. [Photo provided to chinadaily.com.cn]

The SVOM project, initiated in 2005 through a collaboration between the China National Space Administration and France's National Center for Space Studies, has brought together scientists and engineers from esteemed institutions such as the Research Institute in Astrophysics and Planetology in Toulouse, France, and the Institute of High Energy Physics in Beijing.

Weighing 930 kilograms, the SVOM satellite, crafted by the CAS' Innovation Academy for Microsatellites in Shanghai, accommodates four scientific payloads designed by both French and Chinese teams.

Zhang Yonghe, the overall commander of SVOM and a researcher at CAS' Innovation Academy for Microsatellites, emphasized the satellite's role as the centerpiece of a sophisticated, swift, and efficient observation system connected with over 40 ground communication stations, enabling rapid global coordination for space and ground-based observations within a response time of under 10 minutes once a target is pinpointed.

"The system can relay observation commands to SVOM in the time it takes to enjoy a cup of coffee," Zhang said.

With an operational lifespan of at least three years, the SVOM satellite is poised to usher in a new era of high-energy astrophysics research. It is anticipated to unravel the mysteries surrounding the formation and demise processes of first-generation stars, investigate the mechanisms behind black hole births, discover electromagnetic counterparts to gravitational wave events, and refine theories concerning early cosmic evolution.

"We feel much empowered with the deployment of SVOM and expect exciting findings by the satellite in its ensuing operations," said Liu Jifeng, director of CAS' National Astronomical Observatories (NAOC), as SVOM was officially delivered to NAOC on April 23, marking a significant milestone in the project's journey toward unlocking the secrets of the universe.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 连江县| 方城县| 韩城市| 瑞丽市| 惠东县| 会昌县| 孟州市| 昌平区| 嘉黎县| 万州区| 科技| 通化县| 格尔木市| 诸城市| 阜康市| 衡水市| 资中县| 运城市| 栾城县| 穆棱市| 普陀区| 志丹县| 乌拉特后旗| 玛多县| 米易县| 日照市| 枣阳市| 莎车县| 四子王旗| 惠水县| 江山市| 台江县| 奉贤区| 惠东县| 封开县| 格尔木市| 兰坪| 时尚| 香港 | 常山县| 永仁县| 喜德县| 南皮县| 嵊泗县| 富顺县| 蒲城县| 景东| 新乐市| 汉沽区| 嘉黎县| 梁平县| 保靖县| 郁南县| 和田市| 海阳市| 剑川县| 逊克县| 农安县| 新闻| 铁力市| 南开区| 鄂托克前旗| 府谷县| 潮州市| 台中市| 成都市| 苍南县| 台北市| 章丘市| 穆棱市| 延安市| 泰顺县| 普定县| 霍州市| 静安区| 上犹县| 安庆市| 博罗县| 巴林左旗| 乾安县| 永德县| 织金县|