男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
US EUROPE AFRICA ASIA 中文
Business / Auto China

Electrical advance offers power without the wait

By Cheng Yingqi and Wang Ying in Shanghai (China Daily) Updated: 2015-12-19 10:11

Electrical advance offers power without the wait

A worker checks a pure electric car at a workshop in Jianghuai Automobile Co Ltd in Hefei, capital of East China's Anhui province, Aug 19, 2014. [Photo/Xinhua]

Electric cars seem to be an ideal option among next-generation automobiles: They are eco-friendly and accelerate fast with less noise, among other benefits.

The trouble is that every 300 kilometers you may have to wait hours to refill your batteries at a charging station.

Now, researchers from China and the United States have come up with a possible solution. On Friday, a research result published in the journal Science reported a method that promises to triple the energy capacity of supercapacitors, making them comparable - and perhaps superior - to some advanced batteries.

"We have managed to find a balance between fast-charging and storage capacity that could make supercapacitors available for practical applications," said Lin Tianquan, a member of the research team from the Shanghai Institute of Ceramics affiliated with the Chinese Academy of Sciences.

Lithium-ion batteries, like those used in mobile phones and electric cars, are characterized by high capacity compared with their volume and weight. But the disadvantage is obvious, too: they usually take a long time to charge and have limited peak power because the risk of overheating.

Supercapacitors are a different type of energy storage device. Usually, supercapacitors have superfast recharging times and higher limits on output power, but the storage capacity is only 5 percent of that of lithium-ion batteries.

Researchers at the Shanghai Institute of Ceramics, Peking University and the University of Pennsylvania improved a material called grapheme to increase the storage of supercapacitors while keeping their other good features.

"We managed to enhance the properties of supercapacitors by changing the structure of graphene," said Huang Fuqiang, a researcher at the Shanghai Institute of Ceramics.

Graphene is one of the thinnest, lightest, strongest and most conductive materials known to man. It consists of a single layer of carbon atoms arranged in a honeycomb structure. The scientists changed the structure into tubes 4 to 6 nanometers wide. The tubes allow an increase storage capacity.

Before the improvement, a bus could recharge for 30 seconds and run for 5 kilometers on a traditional supercapacitor.

"That works in a small city or airport, but there is obviously a lot to be desired," I-Wei Chen, a materials physicist at the University of Pennsylvania who also worked on the breakthrough, was quoted as saying by IEEE Spectrum, a magazine of the Institute of Electrical and Electronics Engineers in the US.

"Our battery has five times the energy, so it can run 25 kilometers and still charge at the same speed. We are then talking about serious applications in a serious way in transportation," he said.

Hot Topics

Editor's Picks
...
主站蜘蛛池模板: 安康市| 沛县| 民丰县| 汝州市| 扬中市| 南漳县| 永川市| 沁阳市| 新沂市| 汪清县| 丹江口市| 龙泉市| 阜阳市| 扎鲁特旗| 德令哈市| 连江县| 乃东县| 宁城县| 东丽区| 荔浦县| 庐江县| 甘德县| 花莲市| 晋江市| 毕节市| 五常市| 甘德县| 白水县| 泸水县| 伊宁市| 内江市| 湟源县| 冕宁县| 宜城市| 环江| 资溪县| 博客| 新昌县| 朝阳市| 澎湖县| 六安市| 射阳县| 淮北市| 云南省| 尖扎县| 宁河县| 荥经县| 合阳县| 深圳市| 通许县| 岱山县| 石嘴山市| 邵武市| 五常市| 五华县| 泊头市| 和田县| 门源| 砀山县| 信阳市| 遵义县| 瑞丽市| 壤塘县| 南阳市| 石狮市| 绩溪县| 泰兴市| 沈阳市| 榆中县| 泰顺县| 奉新县| 龙里县| 南乐县| 陕西省| 达尔| 浦东新区| 洞头县| 太谷县| 赣州市| 图木舒克市| 宝清县| 日喀则市|