男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

China's High Energy Photon Source enters final construction phase

By Yan Dongjie | chinadaily.com.cn | Updated: 2025-03-27 18:40
Share
Share - WeChat
The civil construction of HEPS campus is completed. [Photo provided to chinadaily.com.cn]

China's flagship synchrotron radiation facility, the High Energy Photon Source, has entered its final construction stage as it began the joint-commissioning phase, the Institute of High Energy Physics of the Chinese Academy of Sciences announced Thursday.

As one of China's key scientific facilities, HEPS occupies an area approximately equal to 90 football fields, but its mission is to illuminate the microscopic world at the nanometer scale.

It will be a fourth-generation synchrotron radiation facility and China's first high-energy light source designed to offer the highest brightness in the world, which is expected to start operation by the end of this year.

In March 2023, the first electron beam of HEPS was achieved via the Linac with the energy of 500 MeV. [Photo provided to chinadaily.com.cn]

It will serve as a research platform for material science, chemical engineering, biomedicine and other fields, said professor Pan Weimin from IHEP, director of the HEPS project.

Pan said that emittance is a critical parameter evaluating electron beam quality, while HEPS achieved a world-class electron beam emittance of 93 pm·rad in its storage ring this January, following a beam current exceeding 40 mA. The facility is able to produce the world's top high-quality bright synchrotron radiation.

"Lower emittance reduces lateral divergence of the electron beam, thereby producing brighter synchrotron radiation," he said.

In November 2023, the electron beam of HEPS was achieved more than 5 nC of bunch charge at 6 GeV via the booster. [Photo provided to chinadaily.com.cn]

HEPS is designed with accelerators, beamlines, end stations and support facilities. The IHEP started the construction in Huairou district in Beijing in 2019.

"The facility is built on 3 meters of plain concrete and 0.8 meters of reinforced concrete, which integrates the entire structure and achieves the goal of micro-vibrations of less than 25 nanometers during operation. In a regular building, even a simple foot stomp could cause nearby equipment to vibrate at the micron level," Pan said, adding that many technical bottlenecks were overcome during the construction process.

The storage ring of the facility is equipped with 1,776 magnets of various colors, which control the electron beam to stably run at high speeds within a thumb-width vacuum track.

On July 1, 2024, the last shielded bellows was installed in the tunnel, completing the installation of the HEPS storage ring and signifying that all components of the storage ring have been linked up. [Photo provided to chinadaily.com.cn]

The narrowest part of this electron track has a diameter of only two to three millimeters. During the construction of the facility, the installation of the vacuum boxes was prone to slight deformations.

"After repeated experiments, we found that the solution was surprisingly simple—by letting the products sit for a week or two after receiving them, until the metal stress is released, the problem is effortlessly resolved," Pan said in an interview with Beijing Daily.

On October 12, 2024, the high-energy synchrotron light from the W73 undulator in the HEPS storage ring was accurately delivered to the end station of HXI High Energy Imaging beamline, located 350 meters away. [Photo provided to chinadaily.com.cn]

The Hard X-ray Imaging (HXI) beamline, among the first set of beamlines constructed, is highlighted as one of the distinctive experimental platforms aimed at studying internal microstructures in engineering materials.

"This large facility is like an oversized X-ray machine, with its emitted light reaching an energy of up to 300 keV, capable of penetrating several centimeters of steel," said Dong Yuhui, HEPS executive deputy director.

Compared to a regular X-ray machine, its brightness is a trillion times greater, enabling us to see the microscopic world much more clearly, he said.

"HEPS can assist researchers in completing previously impossible tasks across fields from aerospace and nanotechnology to biomedicine and new materials development," he said.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 赫章县| 新宁县| 三门县| 揭西县| 恩平市| 大足县| 东乡族自治县| 和顺县| 屯留县| 乃东县| 桃源县| 出国| 鹿邑县| 云阳县| 施甸县| 师宗县| 浠水县| 汉川市| 天长市| 十堰市| 察隅县| 青海省| 高碑店市| 甘谷县| 招远市| 麟游县| 宜阳县| 郧西县| 漳浦县| 闻喜县| 六枝特区| 漳平市| 瓮安县| 开化县| 临安市| 塘沽区| 麻栗坡县| 永登县| 固阳县| 江津市| 华池县| 远安县| 浦江县| 沛县| 佛冈县| 唐山市| 海伦市| 青岛市| 辽阳市| 宜章县| 古浪县| 双鸭山市| 望城县| 封丘县| 霍州市| 崇仁县| 靖宇县| 镇巴县| 崇左市| 瓮安县| 襄垣县| 孝义市| 台湾省| 清新县| 辽阳市| 襄城县| 东阿县| 巴林左旗| 虞城县| 六枝特区| 桐城市| 溧阳市| 封丘县| 宝山区| 青河县| 化德县| 凤阳县| 仙桃市| 泰和县| 贵州省| 乳山市| 扶绥县|