男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
Opinion
Home / Opinion / Global Lens

AI-powered systems can improve medical care

By Iain E. Buchan | China Daily | Updated: 2025-06-11 06:54
Share
Share - WeChat
MA XUEJING/CHINA DAILY

As the world races to develop powerful artificial intelligence, it is also racing to tackle multiple public health challenges that need AI-powered solutions. These challenges include preparing for the next pandemic, tackling the relentless rise in infections that no longer respond to treatment with antimicrobial medicines, reversing the obesity epidemic, understanding and addressing the rising burden of mental health problems, and caring for people living longer but not healthier, often with multiple medical conditions.

In this context, an international network of innovative health systems could make rapid progress toward AI-powered public health.

The nature of health data available for training AI is challenging. Unlike data from cameras and sensors used for training AI to drive a car, the data from medical records for training AI to support healthcare does not present the full picture of people's health. Medical records focus on people who are already ill or have a medical condition. They are just snapshots of patients' conditions. There is so much missing and measurement error in healthcare data that training AI is like asking algorithms to look through holes in a fence, then through obscured glass, to see the true picture of patients' health journeys.

Earlier and fuller information on how people developed illnesses or became sick enough to seek medical help is lacking. This information is essential to finding ways to prevent an illness and support people's well-being. Given the rising costs of caring for aging populations, prevention is vital. Fortunately, AI is starting to tap into the rhythms of daily life — generating new data and user-interactions that can be used to support people's wellbeing and prevent illness.

At present, patient-driven apps and devices tend to focus on specific diseases or treatments, and the most serious patients with multiple conditions face a blizzard of different technologies. There is a need therefore to shift healthcare AI from the mindset of medical app-store to one of a healthcare skill-store for the digital twin of the patient. This shift is vital for achieving more predictive, preventive and personalized care.

For example, people prescribed medication for serious mental illness often face a risk of weight-gain, high blood pressure, diabetes, heart attacks and strokes. Effective "AI allies" for such patients would support not only their use of medication but also their daily choices of food, exercise, social interaction and other activities. This could mitigate the adverse effects of medicines and help improve their quality of life and daily functioning, including workplace productivity.

The AI allies need to learn from patients' interactive "digital twin" or "health avatar", reflecting much more of their health, social circumstances, habits and use (or not) of treatments than medical records do.

Realizing this AI-enabled improvement in preventive and personalized healthcare will need deep collaboration between patients, healthcare providers, healthcare payers (or social health system resource managers), health scientists and AI engineers. The data required to power patient-facing "health avatar" AI can also help improve health and social care providers' services.

Furthermore, data on individuals' journeys into needing care can help medical (and social) care systems to plan their resources and use them to treat the most vulnerable. This goal is sometimes called a "learning health system".

The University of Liverpool's Civic Health Innovation Labs and its health system partners are working to turn the learning systems theory into reality with a triple digital twin approach to the individual patient, the provider and the population.

For example, making the best use of medicines, the patient-level twin monitors medication experiences and enables individuals to track their own health and recognize early warning signs, fostering preventive self-management such as resuming an important medication or seeking help for one that seems to be causing problems. And while the provider-level twin helps the patient's doctor to review medications by pulling together the key information from multiple records in an easy-to-read summary alongside prescribing guidance, the population-level twin identifies the patients who are most likely to benefit from a medication review and offers them fast-track access.

This learning is important because medication-caused harm (from death to brain fog affecting work) is common, the cost of medicines is a major financial pressure on health systems, and very little is known about how patients use medicines — it is estimated that between one-third and half of the medicines are not used as prescribed.

Just as AI such as DeepSeek feed from the size and diversity of training data and users, the ideal "AI allies" for patients, healthcare providers and population health managers need to learn from a global grid of learning health systems. From minimizing antimicrobial resistance to maximizing preventive healthcare in populations living longer with more medical conditions and relatively less resources to care for them — the major public health problems are pressing and don't have national borders. Given the challenges the world faces today, health systems worldwide need to join forces to optimize AI for human health.

The author is W.H. Duncan chair in Public Health Systems and associate pro vice-chancellor for Innovation, University of Liverpool, UK. The views don't necessarily reflect those of China Daily.

If you have a specific expertise, or would like to share your thought about our stories, then send us your writings at opinion@chinadaily.com.cn, and comment@chinadaily.com.cn.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 青河县| 松潘县| 壶关县| 商都县| 屏东县| 化州市| 准格尔旗| 盐亭县| 沛县| 图们市| 寿阳县| 读书| 长垣县| 沾化县| 出国| 大田县| 普兰县| 安泽县| 崇明县| 马山县| 周至县| 宝兴县| 称多县| 恩施市| 周宁县| 文水县| 广水市| 温泉县| 四会市| 同德县| 鄱阳县| 密山市| 双流县| 伊吾县| 宜黄县| 郯城县| 高阳县| 江油市| 崇州市| 调兵山市| 池州市| 千阳县| 崇义县| 永济市| 盐源县| 兰西县| 寿光市| 东台市| 襄垣县| 定西市| 肃宁县| 黄龙县| 海原县| 定结县| 勐海县| 张家港市| 东乡族自治县| 建宁县| 黄平县| 台中市| 临漳县| 无为县| 彰武县| 隆尧县| 花垣县| 长泰县| 哈尔滨市| 克什克腾旗| 安达市| 南郑县| 平乐县| 尚志市| 彩票| 龙山县| 大石桥市| 宁远县| 镇原县| 泰安市| 青神县| 黑龙江省| 岳西县| 千阳县|