男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Scientists break ground on DNA synthesis

Tianjin University study reveals large genomic sequence constructed and transferred to mice

By YAN DONGJIE in Tianjin | China Daily | Updated: 2025-08-15 09:44
Share
Share - WeChat
Industrial biotechnology researchers work in a laboratory affiliated with the Chinese Academy of Sciences in Tianjin in January last year. [Photo/Xinhua]

A recent breakthrough in synthetic biology in Tianjin could pave the way for new treatments for genetic diseases like sickle cell disease and congenital deafness.

A study published in the science methodology journal Nature Methods on July 10 by a team of scientists from Tianjin University claimed to have synthesized a human genome fragment exceeding one million base pairs in length, and successfully transferred it into mice embryos to verify its function.

According to those involved, this achievement marks a significant advancement in human genome synthesis and transfer technology.

The human genome is closely linked to human life, health and disease. Since the completion of the Human Genome Project in 2003, scientists have been trying to synthesize the human genome, but have long struggled with technological bottlenecks.

Over 50 percent of the human genome consists of complex repetitive sequences, posing a considerable challenge to precise synthesis.

"It's like a jigsaw puzzle with millions of pieces, many of which look very similar, making the assembly extremely challenging," said Yuan Yingjin, who led the team.

Yuan, who is also an academician of the Chinese Academy of Sciences and director of the State Key Lab of Synthetic Biology, said that even if long genome fragments are synthesized, validating their genetic function is difficult without transferring them into an animal.

Yuan's team has developed the SynNICE method to tackle this problem.

"Using this method, we have for the first time completed the synthesis of high-repetition human DNA at the million-base-pair level and efficiently transferred this fragment intact into early mice embryos using a yeast nucleus as the transfer shuttle," Yuan said.

Internationally, most research teams in human DNA synthesis are still working at the hundred-kilo-base-pair level and find it challenging to efficiently transfer DNA into mammalian embryos.

This makes this latest development a significant leap forward.

"For decades, scientists have enhanced their understanding of the human genome through sequencing and reading information. By adopting a bottom-up approach to synthesize genes from basic units, we can more directly reveal causal relationships among genome sequences, functions and diseases," Yuan said.

"Scientists are no longer content merely to 'read' and 'edit' the book of life — they now have the ability to 'write' new chapters in it," he added.

The team's research focused on a segment called AZFa on the human Y chromosome, chosen because its deletion is a cause of untreatable male infertility. Synthesizing this segment posed significant challenges, as over 69 percent of its sequence consists of repetitive elements, making it extremely prone to mismatches and recombination, which could lead to failure, Yuan explained.

An artist's impression of DNA information storage technology. [Photo/Xinhua]

To overcome this challenge, the team devised a combined assembly strategy. Initially, they divided the sequence into over 200 smaller fragments, which were then assembled into 23 medium-sized components using Saccharomyces cerevisiae, also known as brewer's yeast. These components were further assembled into four larger structures, again utilizing the yeast.

Finally, employing the gene-editing technique CRISPR-Cas9 and a yeast mating system, the team successfully assembled all fragments into a single, perfectly integrated artificial synthetic chromosome spanning 1.14 million base pairs.

Brewer's yeast was used as it serves as a powerful biological tool equipped with a highly efficient homologous recombination system that automatically recognizes and seamlessly joins matching DNA sequences, said Yuan.

The problem remained of how to safely transfer this large and fragile genome fragment into mice embryos. The team solved this by using yeast nuclei as natural, solid carriers.

"If transferring DNA across species is like a moon landing mission on Earth, our use of yeast nuclei is akin to the spacecraft that safely transports astronauts between Earth and the moon, protecting and compressing the synthetic genome," said Yuan.

This method involves isolating the entire yeast nucleus containing the synthetic DNA. This nucleus acts as a natural, sturdy transport capsule, providing perfect physical protection for the genetic material inside, said Liu Yue, a member of the research team.

The research can shed new light on the treatment of diseases related to chromosomal anomalies. In the future, by synthesizing key gene fragments, scientists may be able to correct defects in the AZFa region causing infertility. Understanding the correlation between genomic variations and diseases can also guide treatments for conditions such as cancer.

Tang Fuchou, a professor at Peking University, said the SynNICE method could potentially extend the functional lifespan of xenotransplantation with humanized pig donor organs in human bodies from two to three years to several decades, offering revolutionary hope for addressing the global organ shortage.

Yuan said the substantial resources provided for basic research were crucial for the team to be able to tackle such "unclaimed territories" in science, such as repetitive sequence assembly and nuclear transfer.

Interdisciplinary collaboration was essential, bringing together experts in synthetic biology, medicine, developmental biology and epigenetics, he said. Gene function validation in the research was carried out by teams from Tianjin University and Tsinghua University, with several hospitals providing real clinical cases for the study.

"Humanity is still in the technology development stage for DNA synthesis. While advancing technological innovation, China remains highly attentive to biosecurity," he said.

In 2017, Tianjin University led scientists from over 20 countries across four continents in drafting the "Tianjin Biosecurity Guidelines for Codes of Conduct for Scientists", which the World Health Organization has recognized as a global biosecurity ethical standard.

Yuan said the ability to synthesize large genomes could spark a medical revolution, potentially curing currently incurable diseases and paving the way for new treatments.

The study report was titled De novo Assembly and Delivery of Synthetic Megabase-Scale Human DNA into Mouse Early Embryos.

Shi Yudie and Zang Yifan contributed to this story.

Online scan the code to watch the video.
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 多伦县| 和政县| 德兴市| 定襄县| 留坝县| 重庆市| 友谊县| 化州市| 黑水县| 德昌县| 汉源县| 正镶白旗| 策勒县| 秦皇岛市| 彭州市| 井冈山市| 南丹县| 田东县| 二连浩特市| 武功县| 拉萨市| 大洼县| 永修县| 福海县| 蒲城县| 绥宁县| 清流县| 基隆市| 鄂州市| 合肥市| 奇台县| 林周县| 舒城县| 湘乡市| 南江县| 巫溪县| 华安县| 板桥市| 资兴市| 确山县| 融水| 称多县| 攀枝花市| 响水县| 红安县| 青海省| 汪清县| 西和县| 庆安县| 白水县| 庆安县| 沙坪坝区| 腾冲县| 鹤庆县| 大关县| 江陵县| 蒙自县| 井研县| 田阳县| 南靖县| 保定市| 克什克腾旗| 万荣县| 丘北县| 满洲里市| 辽源市| 高碑店市| 宜丰县| 河津市| 称多县| 石首市| 石景山区| 乌兰察布市| 哈尔滨市| 独山县| 台南市| 北辰区| 梧州市| 平远县| 玛曲县| 耿马| 清原|