男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Breakthrough reached in propylene production

By YAN DONGJIE in Tianjin | China Daily | Updated: 2025-09-30 09:03
Share
Share - WeChat

Researchers in northern China have developed a new catalyst technology that could significantly reduce costs and carbon emissions in the production of propylene, a key raw material for plastics, synthetic rubber and fibers.

The team from Tianjin University reported that it achieved almost complete utilization of precious metal atoms in propylene catalysts — a long-standing challenge for the chemical industry. Their findings were published in the journal Science on Friday.

Propylene is among the world's most widely used chemical feedstocks, found in everyday products ranging from medical equipment and textiles to agricultural materials. While catalysts are essential in its production, improving their efficiency and cost-effectiveness remains a major global challenge, said Gong Jinlong, who leads the research team and is a faculty member at Tianjin University.

"We have developed an internationally pioneering technology that can effectively extract precious metal atoms hidden deep inside catalyst particles to the surface, thereby achieving full utilization of these atoms, significantly reducing production costs and improving propylene generation efficiency," said Sun Guodong, co-first author of the research paper.

Sun explained that precious metals such as gold, silver, platinum and palladium are rare and costly to extract. Platinum and palladium are mainly used in catalysts and medical devices. Platinum, valued for its stability and safety, serves as a catalyst in about two-thirds of the "on-purpose" propylene production from propane.

However, platinum atoms often clump together inside catalyst particles "like actors hiding behind the scenes," unable to fully play their catalytic role, Sun said. This leads to low efficiency and high costs.

"In 2024, the global usage of precious metals in catalysts reached nearly 200 billion yuan ($28 billion)," he said.

To address this, the Tianjin University team developed a new strategy called "atomic extraction "after more than a decade of research. The method involves adding tin to the surface of a platinum-copper alloy. Tin acts "like a magnet", pulling nearly all the buried platinum atoms to the surface of the catalyst particles.

Gong explained that the process first disperses platinum atoms on copper, breaking up the aggregates into isolated atoms. Then, the "magnetic-like" effect of the tin draws the platinum atoms outward.

"Due to its large atomic radius, tin cannot enter the interior of the copper particles, but it has a strong attraction to platinum atoms. Through strong interactions, tin can completely pull the internal platinum atoms to the catalyst surface," Gong said. "With this strategy, the exposure ratio of platinum on the surface increases from about 30 percent to nearly 100 percent."

He added that earlier experiments in 2018 showed copper could improve the dispersion of platinum atoms, paving the way for the new approach.

In propylene production, the new catalyst requires only one-tenth of the platinum used in the most advanced existing catalysts, while offering even better performance. Compared with traditional catalysts, the new method reduces precious metal consumption by 90 percent — meaning catalyst costs can also fall by 90 percent.

"This marks a major breakthrough in China's catalytic industry, successfully advancing toward a new paradigm of full atomic utilization for low-carbon development," Gong said.

The breakthrough not only offers a revolutionary catalyst design for propylene production, but also holds promise for developing other precious metal catalysts. It could greatly reduce industry reliance on scarce metals such as platinum and palladium, supporting a shift toward low-cost, resource-efficient and high-performance chemical production.

Gong noted that traditional propylene production has a low conversion rate and that carbon residues often build up on catalyst surfaces, reducing efficiency. Air must then be introduced to burn off the carbon deposits, releasing large amounts of carbon dioxide and wasting carbon resources. The new technology improves propylene generation efficiency and minimizes carbon buildup, helping achieve low-carbon production.

The technology remains at the laboratory stage and is expected to take five to 10 years to reach large-scale industrial application.

"This research not only achieves nearly complete utilization of precious metal atoms, but also provides new ideas for improving atomic efficiency in catalyst design," Gong said.

Wang Xiaojing contributed to this story.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 濮阳市| 巍山| 紫阳县| 昌宁县| 元阳县| 红桥区| 剑河县| 南阳市| 拜城县| 叙永县| 屯留县| 仁化县| 江津市| 呼图壁县| 富阳市| 阜宁县| 哈巴河县| 彭山县| 新巴尔虎右旗| 蚌埠市| 乌兰浩特市| 青川县| 禄丰县| 正镶白旗| 藁城市| 洪雅县| 平湖市| 讷河市| 中西区| 林芝县| 长海县| 化德县| 金乡县| 涟源市| 鄂伦春自治旗| 沐川县| 梁河县| 西丰县| 丘北县| 永安市| 长武县| 邮箱| 永和县| 安福县| 恭城| 施甸县| 兴业县| 峨眉山市| 平顺县| 富宁县| 江永县| 河北区| 尉氏县| 阳高县| 克什克腾旗| 卢龙县| 通河县| 玛沁县| 赣州市| 峨山| 清流县| 菏泽市| 英德市| 昭觉县| 井研县| 新沂市| 紫云| 海伦市| 宁蒗| 溧水县| 聂荣县| 米林县| 长子县| 石棉县| 如东县| 奉化市| 昌宁县| 和静县| 潍坊市| 松桃| 农安县| 嵩明县|